System-Specific Static Code Analyzes
for Complex Embedded Systems
Holger M. Kienle, Johan Kraft and Thomas Nolte

Malardalen University, Vasteras, Sweden
{holger.kienle, johan.kraft, thomas.nolte}@mdh.se

SQM 2010, Madrid, Spain
March 15, 2010

PR&GRESS

A national Swedish Strategic Research Centre

‘,(_._'I. EN c 3
o MRTC
\ V' 4 2 Swedish 5 Foundation for Strategic Research
%]

- MALARDALEN REAL-TIME &
MALARDALEN UNMIVERSITY RESEARCH CENTRE %ogy ¥

~ Introduction Embedded Systems | System specific static analyzes | Outlined Solution
Introduction

* System-Specific Static Code Analyzes
— Static analysis tailored to a specific system
— Leverage from system-specific info
* Architecture, naming conventions...
— Complement to generic code checkers
— Potentially high quality impact
* Complex embedded systems
— High dependability requirements
— Highly dynamic behavior

PR&GRESS

Embedded Systems

* Mechatronic control systems wg:diem
* Real-time constraints s
* Typically C/C++

* Often small (< 100 KLOC) N

° Cha”enges 1950 1960 1970 32382 1990 2000 2010

— Correctness depends on timeliness
— Dependability requirements
— Adhere to (safety) standards
* Increasing pressure from governments

—
(]
oo
‘b-

L] n A

&
v

—_
o
~

Size in object instructions
.

¢

PR&GRESS

Complex Embedded Systems

* Large (often > 1 MLOC)

* Long-lived (> 10 years)

* Safety- and/or business-critical

* Flexible - Highly dynamic runtime behavior

— Event-triggered tasks (threads)

— Priority-based online scheduling

— Timing is not known at design time
* An emerging system property

PR&GRESS

Example — ABB Robotics IRC 5

Industrial Robotics Control System

* A very advanced control system

— Accurate (0,3 mm) while fast (3 m/s)

— Controls up to 6 robots in parallel
* Large —around 3 million lines of C/C++
Fuill. * Complex — over 60 processes (tasks)
i Robot performance depends mainly on SW

PR&GRESS

Experiences from ABB Robotics

High software maintenance costs!

Continuous feature growth and evolution
over 15+ years gives legacy issues...

— Increasing code size and complexity
— Knowledge lost due to personnel turnover
— Maintaining quality is a challenge

* Code, architecture, documentation...

High dependability requirements
— Safety- and business critical
— MTBF requirement of 8 years cont. operati
Massive amounts of testing required
— Still far from perfect sw quality...

* Better development tool support needed
PR&GRESS

A I ED
Mpp

System-Specific Static Analyses

* Task interface

* |PC structure

* Task scheduling priority

* IPC message in/out parameters

* Visibility constraints

* Task and semaphore dependencies

PR&GRESS

IPC Message In/Out Parameters

ipc_sendwait()

Sender task » Receiver task
message
typedef struct
{
IPC_HEADER header;
int fieldl; /* In */
BOOL field2; /* Out */
STATUS field3; /* Out */
} TASK _MSG_SERVICE42;

PR&GRESS

IPC Message In/Out Parameters (2)

ipc_sendwait() ,
sender > receiver

message

STATUS task_serviced4?2 (int mg) {
TASK_MSG_SERVICE42 msg;
msg.fieldl = mg;

task_sendwait (.. &msg ..);

for(1 = 0 ; .. ; i++) {
. = msg.field2.state[i];
}

return msg.field3;

)
PR&GRESS

IPC Message In/Out Parameters (3)

ipc_sendwait() ,
sender > receiver

message

TASK_MSG_SERVICE42 *msg;
ipc_receive(.. &msqg ..);

msg—>field3 = do_computation (
. msg—->fieldl ..,
&msg-—>field2) ;

lpc_answer (.. &msg ..);

10

PR&GRESS

IPC Message In/Out Parameters (4)

* Check consistency between
— Design (annotated in C comments)
— Implementation (read/write-only struct fields)

* Exploit system-specific characteristics
— Commenting convention

— Coding style/patterns
* Sender is contained in a single function
— No inter-procedural analysis needed

11

PR&GRESS

Static Analyses Spectrum

——— size gbytes)
— size (LOQ), diff

— code checkers (language-specific)

PC-lint for C/C++
MISRA C

—— environment-specific analyses
(e.g. COM/COM+ [Pinzger et al.])

system
specific

— our analyses

12

PR&GRESS

System-Specific Static Analyses

* Approach

— Develop analyses targeted at
one sysiem

— Augment (not replace) more
generic analyses

— Focus on analyses that
promise to have a high impact
on key quality attributes

system
specific

13

PR&GRESS

System-Specific Static Analyses (2)

* Benefits

— Less false positives

* 30% not uncommon for generic
analyses

* Increases developers' trust
— Better diagnostic messages

— Can be incrementally
introduced (experience-based)

— Can take advantage of
simplifying assumptions

system
specific

14

PR&GRESS

Enabling System-Specific Static Analyzes

* An analysis platform is needed
— Several candidates exists...

 Main candidate: “Understand for C++” (1)

— Creates a “symbol database” over the code
* “Entities™: Files, Functions, Variables...
* “References”: Calls, Uses, Assignments...

— Scales to large systems
* Parses 1,3 MLOC in 149 seconds

— Has an interesting API, in Perl and C
* Well documented, allows for custom extensions

(1) Scientific Toolworks, Inc. 15

PR&GRESS

Outlined Solution

“Understand” Database Structure

Symbols References Lexemes

Declare, f2.c, line 43
Use, fl.c, line 20

Parameter p

int [fune—_ (| int | p|)
Define, f2.c, line 43 = \

return add (1 el,| 21)1I;

Function func

Function add

Parameter a

Call, f2.c, line 45
Define, fl.c, line 18

Variable ret

Parameter b

Declare, fl.c, line 18

Use, fl.c, line 19 -\

—7 | |
\

Declare, fl.c, line 17 \add (] int [a],]int|bf)

Set, fl.c, line 19 ——— { \\

Use, fl.c, line 20 —\m ret \| ;
ret §\a +| b+
Declare, fl.c, line 18 return | ri/;/

Use, fl.c, line 19

PR&GRESS

Understand API Example (Perl:ish)

« Sub exploreCallGraph(func)
— $visited{$func->1d()} = $func->name();
— foreach my call (func.refs(“call”))
e If (not visited(call.ent().i1d())) {

— print(func.name() . “ calls
call.ent().name() . “ at “ .
call.fileQ).name() . “ “ . call.lTine());

— explorecCallGraph($call->ent()); }

* my mainFunc = db.lookup(“main”,“function”);
 explorecCallGraph(mainFunc);

17

PR&GRESS

Why “Understand”

 Several similar tools exists
— CodeSurfer, Imagix 4D, Rigi ...

* A handfull were evaluated in 2005

* Understand was selected, since
— Superior processing speed
* Imagix and CodeSurfer chokes on 500 KLOC

— Well-documented API
* in Perl and C

— Relatively affordable at the time, $500.

18

PR&GRESS

Outlined Solution

“Understand” Performance

» Code parsing o
— 183 KLOC: 15 sec v=3E-“XZ+7E-°5X+1f%6/
— 1,3 MLOC: 149 sec /

* Fitted curve (x°) O —— a1

— The x*factor is small e ,4
10 - : :

* “linear” for < 1 MLOC | il |

— Predicted: N S N S S R
* 5 MLOC: ~20 min R om0 100000t
* 10 MLOC: ~60 min

* Scales to large systems!
PR&GRESS

Lines of Code

19

Drawbacks of Understand

* Relatively simplistic program model
—No AST:s or CFG:s
— Probably a reason for the fast processing
— Lexeme level analysis still possible
* AST and CFG libraries can be added on top
* No advanced analyzes built-in
— API allows for own extensions
* Example: Program slicing recently implemented
* Proprietary and expensive ($2000/lic.)

— Replace with similar open source solution
PR&GRESS

20

~ Introduction | Embedded Systems | System specific static analyzes| Outlined Solution
Outlined Solution

Interfaces for other
SA tools

ibraries for program slicing etc

Analysis stack

Code

21

PR&GRESS

Summary

* System-specific static analyzes as
complement to generic code checkers
— Leverage on system-specific information
— High potential, especially for large systems
— Easy to integrate in development process
— Potentially high impact on software quality

* Enabling technology
— An open solution similar to Understand
— Additional libraries (analysis stack)
— A notation for analysis specifications (queries)
PR&GRESS

System-Specific Static Analyses

* Task interface

* |PC structure

* Task scheduling priority

* |[PC message in/out parameters

* Visibility constraints

* Task and semaphore dependencies

PR&GRESS

23

Task Scheduling Priority

* Generally each task has a fixed priority
— Determined at design time
— Not changed during run-time

* However, there are exceptions...

bytes = ipc_receive (.. IPC_NODELAY ..);

if (bytes <= 0) {
(void) os_change_priority(task_id,
max_priority);
prio_change = TRUE;

}

PR&GRESS

24

Task Scheduling Priority (2)

* Check that code changes do not introduce
new dynamic priority changes
—os_change_priority () calls

* Important because such a change requires
a detailed impact analysis

PR&GRESS

25

Visibility Constraints

* Functions are tagged as

— PUBLIC (anybody can call them)
— PRIVATE (within translation unit)
— INTERNAL (only within subsystem)

#define PRIVATE static
#define PUBLIC
#define INTERNAL

PRIVATE void foo () ;

 Check function calls for violations of the

INTERNAL visibility constraints
PR&GRESS

26

