
Holger M. Kienle, Johan Kraft and Thomas Nolte
Mälardalen University, Västerås, Sweden

{holger.kienle, johan.kraft, thomas.nolte}@mdh.se

System-Specific Static Code Analyzes
for Complex Embedded Systems

SQM 2010, Madrid, Spain
March 15, 2010

Introduction

• System-Specific Static Code Analyzes

– Static analysis tailored to a specific system

– Leverage from system-specific info

• Architecture, naming conventions...

– Complement to generic code checkers

– Potentially high quality impact

• Complex embedded systems

– High dependability requirements

– Highly dynamic behavior

Introduction Embedded Systems System specific static analyzes Outlined Solution

Embedded Systems
• Mechatronic control systems

• Real-time constraints

• Typically C/C++

• Often small (< 100 KLOC)

• Challenges

– Correctness depends on timeliness

– Dependability requirements

– Adhere to (safety) standards

• Increasing pressure from governments

Introduction Embedded Systems System specific static analyzes Outlined Solution

Complex Embedded Systems

• Large (often > 1 MLOC)

• Long-lived (> 10 years)

• Safety- and/or business-critical

• Flexible - Highly dynamic runtime behavior

– Event-triggered tasks (threads)

– Priority-based online scheduling

– Timing is not known at design time

• An emerging system property

System specific static analyzes Outlined SolutionSystem specific static analyzes Outlined SolutionIntroduction Embedded Systems

Example – ABB Robotics IRC 5
Industrial Robotics Control System

• A very advanced control system
– Accurate (0,3 mm) while fast (3 m/s)
– Controls up to 6 robots in parallel

• Large – around 3 million lines of C/C++
• Complex – over 60 processes (tasks)
• Robot performance depends mainly on SW

System specific static analyzes Outlined SolutionIntroduction Embedded Systems

Experiences from ABB Robotics
• High software maintenance costs!

• Continuous feature growth and evolution
over 15+ years gives legacy issues...

– Increasing code size and complexity

– Knowledge lost due to personnel turnover

– Maintaining quality is a challenge

• Code, architecture, documentation...

• High dependability requirements

– Safety- and business critical

– MTBF requirement of 8 years cont. operation

• Massive amounts of testing required

– Still far from perfect sw quality...

• Better development tool support needed

System specific static analyzes Outlined SolutionIntroduction Embedded Systems

7

System-Specific Static Analyses

• Task interface

• IPC structure

• Task scheduling priority

• IPC message in/out parameters

• Visibility constraints

• Task and semaphore dependencies

System specific static analyzes Outlined SolutionIntroduction Embedded Systems

8

IPC Message In/Out Parameters

sender Receiver task

message

ipc_sendwait()
sendersendersendersenderSender task

typedef struct

{

 IPC_HEADER header;

 int field1; /* In */

 BOOL field2; /* Out */

 STATUS field3; /* Out */

} TASK_MSG_SERVICE42;

Embedded Systems Outlined SolutionIntroduction System specific static analyzes

9

IPC Message In/Out Parameters (2)

sender receiver

message

ipc_sendwait()
sendersendersendersendersender

STATUS task_service42 (int mg) {

TASK_MSG_SERVICE42 msg;

msg.field1 = mg;

task_sendwait(… &msg …);

for(i = 0 ; … ; i++) {

… = msg.field2.state[i];

}

return msg.field3;

}

Embedded Systems Outlined SolutionIntroduction System specific static analyzes

10

IPC Message In/Out Parameters (3)

sender receiver

message

ipc_sendwait()
sendersendersendersendersender

TASK_MSG_SERVICE42 *msg;

ipc_receive(… &msg …);

msg->field3 = do_computation (

… msg->field1 …,

&msg->field2);

ipc_answer(… &msg …);

Embedded Systems Outlined SolutionIntroduction System specific static analyzes

11

IPC Message In/Out Parameters (4)

• Check consistency between

– Design (annotated in C comments)

– Implementation (read/write-only struct fields)

• Exploit system-specific characteristics

– Commenting convention

– Coding style/patterns
• Sender is contained in a single function

→ No inter-procedural analysis needed

Embedded Systems Outlined SolutionIntroduction System specific static analyzes

12

Static Analyses Spectrum

generic

system

specific

size (bytes)
size (LOC), diff

code checkers (language-specific)
PC-lint for C/C++
MISRA C

environment-specific analyses
(e.g. COM/COM+ [Pinzger et al.])

our analyses

Embedded Systems Outlined SolutionIntroduction System specific static analyzes

13

System-Specific Static Analyses

• Approach

– Develop analyses targeted at
one system

– Augment (not replace) more
generic analyses

– Focus on analyses that
promise to have a high impact
on key quality attributes

generic

system

specific

Embedded Systems Outlined SolutionIntroduction System specific static analyzes

14

System-Specific Static Analyses (2)

• Benefits

– Less false positives
• 30% not uncommon for generic

analyses

• Increases developers' trust

– Better diagnostic messages

– Can be incrementally
introduced (experience-based)

– Can take advantage of
simplifying assumptions

generic

system

specific

Embedded Systems Outlined SolutionIntroduction System specific static analyzes

15

Enabling System-Specific Static Analyzes

• An analysis platform is needed

– Several candidates exists...

• Main candidate: “Understand for C++” (1)

– Creates a “symbol database” over the code
• “Entities”: Files, Functions, Variables...

• “References”: Calls, Uses, Assignments...

– Scales to large systems
• Parses 1,3 MLOC in 149 seconds

– Has an interesting API, in Perl and C
• Well documented, allows for custom extensions

(1) Scientific Toolworks, Inc.

Embedded Systems System specific static analyzesIntroduction Outlined Solution

16

“Understand” Database Structure

int add (int a , int b)

{

int ret ;

ret = a b+

return

}

ret

;

;

int func (int)

{

return

}

;add (p , 1)

p

Symbols References Lexemes

Variable ret

Parameter a

Function add

Parameter b

Function func

Parameter p

Define, f1.c, line 18

Call, f2.c, line 45

Declare, f1.c, line 18

Use, f1.c, line 19

Declare, f1.c, line 17

Set, f1.c, line 19

Declare, f1.c, line 18

Use, f1.c, line 19

Use, f1.c, line 20

Define, f2.c, line 43

Declare, f2.c, line 43

Use, f1.c, line 20

Embedded Systems System specific static analyzesIntroduction Outlined Solution

17

Understand API Example (Perl:ish)

• SubSubSubSub exploreCallGraph(func)

– $visited{$func->id()} = $func->name();

– foreachforeachforeachforeach mymymymy call (func.refs(“call”))

• IfIfIfIf (not visited(call.ent().id())) {

– print(func.name() . “ calls “ .

call.ent().name() . “ at “ .

call.file().name() . “ “ . call.line());

– exploreCallGraph($call->ent()); }

• mymymymy mainFunc = db.lookup(“main”,“function”);

• exploreCallGraph(mainFunc);

Embedded Systems System specific static analyzesIntroduction Outlined Solution

18

Why “Understand”

• Several similar tools exists

– CodeSurfer, Imagix 4D, Rigi ...

• A handfull were evaluated in 2005

• Understand was selected, since

– Superior processing speed
• Imagix and CodeSurfer chokes on 500 KLOC

– Well-documented API
• in Perl and C

– Relatively affordable at the time, $500.

Embedded Systems System specific static analyzesIntroduction Outlined Solution

19

“Understand” Performance

• Code parsing

– 183 KLOC: 15 sec

– 1,3 MLOC: 149 sec

• Fitted curve (x2)

– The x2 factor is small

• “linear” for < 1 MLOC

– Predicted:

• 5 MLOC: ~20 min

• 10 MLOC: ~60 min

• Scales to large systems!

ABB-1

ABB-2

ECU

RTSSim

y = 3E-11x2 + 7E-05x + 1,9667

1

10

100

1000

10000

1 000 10 000 100 000 1 000 000 10 000 000

Lines of Code

Runtime (s)

Embedded Systems System specific static analyzesIntroduction Outlined Solution

20

Drawbacks of Understand

• Relatively simplistic program model

– No AST:s or CFG:s

– Probably a reason for the fast processing

– Lexeme level analysis still possible
• AST and CFG libraries can be added on top

• No advanced analyzes built-in

– API allows for own extensions
• Example: Program slicing recently implemented

• Proprietary and expensive ($2000/lic.)

– Replace with similar open source solution

Embedded Systems System specific static analyzesIntroduction Outlined Solution

21

Interfaces for other
SA tools

Outlined Solution

Symbol Database API
“Understand” or open source replacement

Mid-level API
(Libraries for AST and CFG etc)

High-level API
(Libraries for program slicing etc)

System-specific analysis
expressed in DSL

DSL Interface
(Interpreter/translator)

Symbol Database
Understand or open source alternative

Code

A
n

a
ly

s
is

 s
ta

c
k

Embedded Systems System specific static analyzesIntroduction Outlined Solution

Summary

• System-specific static analyzes as
complement to generic code checkers

– Leverage on system-specific information

– High potential, especially for large systems

– Easy to integrate in development process

– Potentially high impact on software quality

• Enabling technology

– An open solution similar to Understand

– Additional libraries (analysis stack)

– A notation for analysis specifications (queries)

23

System-Specific Static Analyses

• Task interface

• IPC structure

• Task scheduling priority

• IPC message in/out parameters

• Visibility constraints

• Task and semaphore dependencies

24

Task Scheduling Priority

• Generally each task has a fixed priority

– Determined at design time

– Not changed during run-time

• However, there are exceptions...

bytes = ipc_receive (… IPC_NODELAY …);

if (bytes <= 0) {

(void) os_change_priority(task_id,

max_priority);

prio_change = TRUE;

}

25

Task Scheduling Priority (2)

• Check that code changes do not introduce
new dynamic priority changes

– os_change_priority() calls

• Important because such a change requires
a detailed impact analysis

26

Visibility Constraints

• Functions are tagged as

– PUBLIC (anybody can call them)

– PRIVATE (within translation unit)

– INTERNAL (only within subsystem)

• Check function calls for violations of the

INTERNAL visibility constraints

#define PRIVATE static

#define PUBLIC

#define INTERNAL

PRIVATE void foo();

